Fair Bayes-Optimal Classifiers under Predictive Parity

Xianli Zeng, Edgar Dobriban, Guang Cheng January 30, 2023

Reviewer : Park Seok Hoon , Seoul National University IDEA LAB

1 Contribution

2 Preliminaries

Table of Contents

1 Contribution

2 Preliminaries

3 Main Theorem

4 Algorithm : FairBayes-DPP

6 results

 They identify a sufficient condition under which all fair Bayes-optimal classifiers are GWTR

They proposed the FairBayes-DPP algorithm for binary fair classification.

Table of Contents

1 Contribution

2 Preliminaries

3 Main Theorem

4 Algorithm : FairBayes-DPP

6 results

- $X \in \mathcal{X}$: Feature data
- $A \in \mathcal{A}$: protected variable
- $Y \in \{0,1\}$: ground truth label

•
$$\eta_a(x) = P(Y = 1 | X = x, A = a)$$

A randomized classifier is a measurable function $f : \mathcal{X} \times \mathcal{A} \to [0, 1]$, indicating the probability of predicting $\hat{Y} = 1$ when observing X = x and A = a. We denote $\hat{Y}_f = \hat{Y}_f(x, a)$ the prediction induced by the classifier f

A classifier f is a GWTR if there are constants $t_a, a \in A$, and functions $r_a : \mathcal{X} \to [0, 1], a \in A$ such that for all $x \in \mathcal{X}$ and $a \in A$

$$f(x,a) = I(\eta_a(x) > t_a) + r_a(x)I(\eta_a(x) = t_a)$$

A classifier f satisfies predictive parity if for all $a \in A$,

$$P(Y = 1 | \hat{Y}_f = 1, A = a) = P(Y = 1 | \hat{Y}_f = 1)$$

Also, $DPP(f) = \sum_{a \in \mathcal{A}} |P(Y = 1 | \hat{Y}_f = 1, A = a) - P(Y = 1 | \hat{Y}_f = 1)|$ When the predictive parity is commonly considered, the false positives are particularly harmful. So, we consider cost-sensitive classfication.

For a cost parameter $c \in [0, 1]$, the cost-sensitive zero-one risk of the classifier f is as belows

$$R_c(f) = cP(\hat{Y}_f = 1, Y = 0) + (1 - c)P(\hat{Y}_f = 0, Y = 1)$$

In this paper, they proposed fair Bayes-optimal classifier that satisfied Predictive Parity.

$$f_{PPV}^* = \operatorname{argmin}_{f:DPP(f)=0} R_c(f)$$

1 Contribution

2 Preliminaries

4 Algorithm : FairBayes-DPP

Condition (*)

$$\min_{a \in \mathcal{A}} P(Y = 1 | \eta_a(X) \ge c, A = a) \ge \max_{a \in \mathcal{A}} P(Y = 1 | A = a)$$

: the performances of different groups vary only moderately

Consider the cost-sensitive 0-1 risk with cost parameter c. If the condition (*) holds, then all fair Bayes-optimal classifiers under predictive parity are GWTR. Thus, for all f_{PPV}^* , there are $(t_a^*)_{a=1}^{|\mathcal{A}|}$ and functions $r_a^*(x) : \mathcal{X} \to [0, 1]$ such that, for all $x \in \mathcal{X}$ and $a \in \mathcal{A}$,

$$f_{PPV}^{*}(x,a) = I(\eta_{a}(x) > t_{a}^{*}) + r_{a}^{*}(x)I(\eta_{a}(x) = t_{a}^{*})$$

1 Contribution

2 Preliminaries

3 Main Theorem

4 Algorithm : FairBayes-DPP

- The DPP constraint is non-convex with respect to the model $\hat{\eta}_a(x)$ parameters.
- In such cases, incorporating fairness constraints as a penalty in the training objective may be hard due to potential local minima.
- So, they consider post-processing algorithms.

- They apply standard ML algorithms to learn the feature and group-conditional label probabilities η_a(X) based on the whole datasets.
- L : loss function, $\mathcal{G} = \{g_{\theta}, \theta \in \Theta\}$
- $\hat{\eta}_a(X) = g_{\hat{\theta}}(x, a)$ where $\hat{\theta} \in \operatorname{argmin}_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^n L(y_i, g_{\theta}(x_i, a_i))$

• If the emirical version of Condition (*) holds,

Find threshold $t_a, a \in A$ which minimize cost-sensitive risk and satisfy sample predictive parity by using gridsearch.

Table of Contents

1 Contribution

2 Preliminaries

B Main Theorem

4 Algorithm : FairBayes-DPP

They sampled 70%, 50% and 30% as training, validation and test dataset with replacement.

Adult

- : protected variable : gender
- 2 Compas
 - : protected variable : race
- 3 CelebA
 - : protected variable : gender

- They experiments many times by sampling train,test and validation datsets.
- cost parameter c = 0.5

Adult and Compas

- The conditional probability η is learned via a three-layer MLP with 32 hidden neurons per layer.
- Batch size of Adult : 512, Batch size of Compas : 2048

• The conditional probability η is learned via a Resnet50.

ATTRIBUTES	PER-ATTRIBUTE ACCURACY		PER-ATTRIBUTE DPP	
	FAIRBAYES-DPP	UNCONSTRAINED	FAIRBAYES-DPP	UNCONSTRAINED
ARCHED EYEBROWS	0.838(0.003)	0.838(0.003)	0.027(0.015)	0.099(0.041)
ATTRACTIVE	0.825(0.002)	0.826(0.003)	0.075(0.011)	0.169(0.016)
BAGS UNDER EYES	0.853(0.002)	0.852(0.002)	0.024(0.015)	0.056(0.034)
BANGS	0.959(0.001)	0.959(0.001)	0.007(0.007)	0.069(0.029)
BIG LIPS	0.706(0.002)	0.717(0.003)	0.023(0.015)	0.115(0.027)
BIG NOSE	0.845(0.002)	0.847(0.003)	0.083(0.020)	0.145(0.023)